direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C2×C42.29C22, C42.237D4, C42.363C23, C4⋊C4.86C23, C8⋊C4⋊63C22, (C2×C4).331C24, (C2×C8).452C23, (C22×C4).457D4, C23.874(C2×D4), D4⋊C4⋊94C22, C4.22(C4.4D4), (C2×D4).100C23, C42.C2⋊34C22, C4⋊1D4.145C22, (C2×C42).844C22, (C22×C8).458C22, C22.591(C22×D4), C22.124(C8⋊C22), (C22×C4).1553C23, C22.84(C4.4D4), (C22×D4).367C22, (C2×C8⋊C4)⋊38C2, C4.40(C2×C4○D4), (C2×C4).511(C2×D4), C2.38(C2×C8⋊C22), (C2×D4⋊C4)⋊56C2, (C2×C4⋊1D4).23C2, (C2×C42.C2)⋊34C2, C2.42(C2×C4.4D4), (C2×C4).710(C4○D4), (C2×C4⋊C4).622C22, SmallGroup(128,1865)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 580 in 244 conjugacy classes, 100 normal (12 characteristic)
C1, C2, C2 [×6], C2 [×4], C4 [×4], C4 [×8], C22, C22 [×6], C22 [×20], C8 [×4], C2×C4 [×2], C2×C4 [×8], C2×C4 [×12], D4 [×28], C23, C23 [×16], C42 [×4], C4⋊C4 [×4], C4⋊C4 [×10], C2×C8 [×4], C2×C8 [×4], C22×C4, C22×C4 [×2], C22×C4 [×2], C2×D4 [×4], C2×D4 [×26], C24 [×2], C8⋊C4 [×4], D4⋊C4 [×16], C2×C42, C2×C4⋊C4 [×2], C2×C4⋊C4 [×2], C42.C2 [×4], C42.C2 [×2], C4⋊1D4 [×4], C4⋊1D4 [×2], C22×C8 [×2], C22×D4 [×2], C22×D4 [×2], C2×C8⋊C4, C2×D4⋊C4 [×4], C42.29C22 [×8], C2×C42.C2, C2×C4⋊1D4, C2×C42.29C22
Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], C2×D4 [×6], C4○D4 [×4], C24, C4.4D4 [×4], C8⋊C22 [×4], C22×D4, C2×C4○D4 [×2], C42.29C22 [×4], C2×C4.4D4, C2×C8⋊C22 [×2], C2×C42.29C22
Generators and relations
G = < a,b,c,d,e | a2=b4=c4=d2=1, e2=c, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd=b-1, ebe-1=bc2, dcd=c-1, ce=ec, ede-1=b2c-1d >
(1 53)(2 54)(3 55)(4 56)(5 49)(6 50)(7 51)(8 52)(9 44)(10 45)(11 46)(12 47)(13 48)(14 41)(15 42)(16 43)(17 29)(18 30)(19 31)(20 32)(21 25)(22 26)(23 27)(24 28)(33 57)(34 58)(35 59)(36 60)(37 61)(38 62)(39 63)(40 64)
(1 60 21 12)(2 57 22 9)(3 62 23 14)(4 59 24 11)(5 64 17 16)(6 61 18 13)(7 58 19 10)(8 63 20 15)(25 47 53 36)(26 44 54 33)(27 41 55 38)(28 46 56 35)(29 43 49 40)(30 48 50 37)(31 45 51 34)(32 42 52 39)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)(33 35 37 39)(34 36 38 40)(41 43 45 47)(42 44 46 48)(49 51 53 55)(50 52 54 56)(57 59 61 63)(58 60 62 64)
(2 24)(3 7)(4 22)(6 20)(8 18)(9 11)(10 62)(12 60)(13 15)(14 58)(16 64)(19 23)(26 56)(27 31)(28 54)(30 52)(32 50)(33 35)(34 41)(36 47)(37 39)(38 45)(40 43)(42 48)(44 46)(51 55)(57 59)(61 63)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
G:=sub<Sym(64)| (1,53)(2,54)(3,55)(4,56)(5,49)(6,50)(7,51)(8,52)(9,44)(10,45)(11,46)(12,47)(13,48)(14,41)(15,42)(16,43)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28)(33,57)(34,58)(35,59)(36,60)(37,61)(38,62)(39,63)(40,64), (1,60,21,12)(2,57,22,9)(3,62,23,14)(4,59,24,11)(5,64,17,16)(6,61,18,13)(7,58,19,10)(8,63,20,15)(25,47,53,36)(26,44,54,33)(27,41,55,38)(28,46,56,35)(29,43,49,40)(30,48,50,37)(31,45,51,34)(32,42,52,39), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (2,24)(3,7)(4,22)(6,20)(8,18)(9,11)(10,62)(12,60)(13,15)(14,58)(16,64)(19,23)(26,56)(27,31)(28,54)(30,52)(32,50)(33,35)(34,41)(36,47)(37,39)(38,45)(40,43)(42,48)(44,46)(51,55)(57,59)(61,63), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)>;
G:=Group( (1,53)(2,54)(3,55)(4,56)(5,49)(6,50)(7,51)(8,52)(9,44)(10,45)(11,46)(12,47)(13,48)(14,41)(15,42)(16,43)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28)(33,57)(34,58)(35,59)(36,60)(37,61)(38,62)(39,63)(40,64), (1,60,21,12)(2,57,22,9)(3,62,23,14)(4,59,24,11)(5,64,17,16)(6,61,18,13)(7,58,19,10)(8,63,20,15)(25,47,53,36)(26,44,54,33)(27,41,55,38)(28,46,56,35)(29,43,49,40)(30,48,50,37)(31,45,51,34)(32,42,52,39), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (2,24)(3,7)(4,22)(6,20)(8,18)(9,11)(10,62)(12,60)(13,15)(14,58)(16,64)(19,23)(26,56)(27,31)(28,54)(30,52)(32,50)(33,35)(34,41)(36,47)(37,39)(38,45)(40,43)(42,48)(44,46)(51,55)(57,59)(61,63), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64) );
G=PermutationGroup([(1,53),(2,54),(3,55),(4,56),(5,49),(6,50),(7,51),(8,52),(9,44),(10,45),(11,46),(12,47),(13,48),(14,41),(15,42),(16,43),(17,29),(18,30),(19,31),(20,32),(21,25),(22,26),(23,27),(24,28),(33,57),(34,58),(35,59),(36,60),(37,61),(38,62),(39,63),(40,64)], [(1,60,21,12),(2,57,22,9),(3,62,23,14),(4,59,24,11),(5,64,17,16),(6,61,18,13),(7,58,19,10),(8,63,20,15),(25,47,53,36),(26,44,54,33),(27,41,55,38),(28,46,56,35),(29,43,49,40),(30,48,50,37),(31,45,51,34),(32,42,52,39)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32),(33,35,37,39),(34,36,38,40),(41,43,45,47),(42,44,46,48),(49,51,53,55),(50,52,54,56),(57,59,61,63),(58,60,62,64)], [(2,24),(3,7),(4,22),(6,20),(8,18),(9,11),(10,62),(12,60),(13,15),(14,58),(16,64),(19,23),(26,56),(27,31),(28,54),(30,52),(32,50),(33,35),(34,41),(36,47),(37,39),(38,45),(40,43),(42,48),(44,46),(51,55),(57,59),(61,63)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)])
Matrix representation ►G ⊆ GL8(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 8 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 5 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 12 |
0 | 0 | 0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 5 | 12 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
4 | 15 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 13 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
G:=sub<GL(8,GF(17))| [16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,4,0,0,0,0,0,0,8,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,12,5,0,0,0,0,0,0,12,12,0,0,0,0,12,12,0,0,0,0,0,0,5,12,0,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0],[1,4,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[4,16,0,0,0,0,0,0,15,13,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0] >;
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 8A | ··· | 8H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 8 | 8 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | C4○D4 | C8⋊C22 |
kernel | C2×C42.29C22 | C2×C8⋊C4 | C2×D4⋊C4 | C42.29C22 | C2×C42.C2 | C2×C4⋊1D4 | C42 | C22×C4 | C2×C4 | C22 |
# reps | 1 | 1 | 4 | 8 | 1 | 1 | 2 | 2 | 8 | 4 |
In GAP, Magma, Sage, TeX
C_2\times C_4^2._{29}C_2^2
% in TeX
G:=Group("C2xC4^2.29C2^2");
// GroupNames label
G:=SmallGroup(128,1865);
// by ID
G=gap.SmallGroup(128,1865);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,680,758,723,100,2804,172,4037,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=c^4=d^2=1,e^2=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d=b^-1,e*b*e^-1=b*c^2,d*c*d=c^-1,c*e=e*c,e*d*e^-1=b^2*c^-1*d>;
// generators/relations